Mitigating the effects of high temperature on leaf net photosynthetic rate and grain yield by spraying two reagents

Min Li, Kaixia Ding, Qianfei Wei, Xiaohan Yin, Yulei Zhu, Jincai Li, Youhong Song* Anhui Agricultural University, School of Agronomy, Anhui province, Hefei, 233036. Corresponding email: uqysong@163.com

Abstract

High temperature in the grain-filling stage of winter wheat is one of the important meteorological disasters that has a great influence on growth characteristics and grain yield. The purpose of this study was to mitigate the effects of high temperature on wheat production by selecting useful chemical reagents and suitable spraying time. In 2017-18, wheat varieties i.e. Huaimai 33 and Annong 0711 were used to study the alleviating effects of spraying two reagents in different time periods (prior to, during and post high temperature treatment, HTT) in grain-filling stage. The Pn, SPAD, 1000-grain weight and yield of wheat under high temperature could be improved by spraying Epibrassinolide (BR) and KH₂PO₄, and spraying KH₂PO₄ had the better effect compared to BR in alleviating the harm caused by high temperature. The time to spray prior to HTT, or post has better effects compared to spray during HTT.

Key Words

Winter wheat, high temperature, BR, KH₂PO₄, grain yield

Introduction

Wheat is one of the most important grain crops in China, where the optimum temperature of wheat grain-filling stage is supposed to be 20-24°C, but the stage is in the transition period from spring to summer, thus it is easy to encounter high temperature incidents (Hays et al. 2007). According to data analysis from 1979 to 2000, up to 10% yield potential of wheat is lost (You et al. 2009) and grain quality is compromised (Dixon et al. 2009; Caffe-Treml et al. 2011), which can be attributed to 1°C temperature enhancement during wheat season in China. As predicted, global wheat production will be reduced by 6% for each degree increase in temperature in future (Lipiec et al. 2013). Therefore, it is of great significance to study the cultivation techniques and chemical techniques to alleviate the harm of terminal high temperature. Epibrassinolide (BR) is regarded as the sixth largest hormone. Spraying BR is beneficial to the improvement of photosynthetic performance and dry matter accumulation of wheat (Li et al, 2015). KH₂PO₄ is a commonly used and effective spraying reagent in wheat to enhance abiotic stress tolerance (Yang et al. 2018). However, when to spray is rarely reported in coping with terminal heat stress in wheat.

Methods

The experiment was carried out in 2017-2018 at Anhui Agricultural University in Hefei, China (31°58'N, 117°240'E). Wheat cultivars are Huaimai 33 and Annong 0711, which was widely grown locally. The seeds are sowing on November 5 in 2017. Field trials were conducted in plots (2m×3m) and 25 cm between rows in

randomized complete blocks with three replications. Field management followed local agricultural practice. In the experiment, natural temperature $+5^{\circ}$ C temperature was set as high temperature treat(HTT) by covering the plastic film (the thickness of plastic film is 0.08 mm, the transmittance of plastic film is up to 95%, about 2.5 m high) at 11:00-16:00 of 12-18 d after flowering (DAF). Fig. 1 showed the temperature changes during DAF12-18, no 'burning leaves' and obvious 'ripening' phenomenon observed during high-temperature treatment. BR ('B') and KH₂PO₄ ('C') reagents was sprayed and water was used as CK ('A'). The spraying concentration of BR and KH₂PO₄ were 0.1mg/L and 0.2%. All reagent were sprayed using the 673.8L/hm² amount at three periods: prior to treatment (1), during the treatment (2) and post treatment (3) at 17:30 every day.

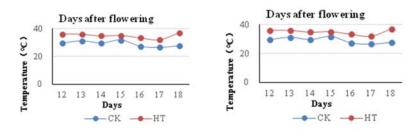


Fig. 1 The maximum temperature time course after flowering (a) and (b) imposing time in a day in heat stress treatment (HT) and control (CK).

Results

2.1 Effects of spraying KH₂PO₄ and BR on Pn and SPAD in flag leaves of wheat under high temperature

The changes of Pn and SPAD in wheat flag leaves under different treatment were shown in Table 1 and Table 2. The Pn and SPAD of flag leaves decreased during grain filling in all three treatments. Huaimai 33 and Annong 0711 had a similar effect. Compared to the CK, spraying BR and KH_2PO_4 was beneficial to the improvement of flag leaf Pn and SPAD, and the effect showed that $KH_2PO_4 > BR > CK$. In terms of spraying time, spraying BR and KH_2PO_4 prior to and post high temperature treatment maintained higher levels of Pn and SPAD.

Table 1. Effects of spraying KH₂PO₄ and BR on Pn (µmol CO₂ m⁻² s⁻¹) in flag leaves of wheat under high temperature

Cultivar	Treatment	10 DAF	20 DAF	30 DAF
	A1	26. 33±2. 24a	18. 80±1. 00d	11. 10±0. 22c
	A2	26. 00±1. 21a	18. 20±0. 90d	10. 98±0. 06c
	A3	25. 83±0. 84a	18. 47±0. 06d	11. 22±0. 16c
	B1	26. 07±0. 87a	21.87±1.25c	13. 03±0. 13b
Huaimai 33	B2	25. 87±1. 94a	21.50±1.30c	12. 91±0. 06b
Huaimai 33	В3	25. 57±2. 05a	22. 47±1. 25bc	13. 87±0. 35a
	C1	26. 13±3. 23a	24. 27±0. 75a	13. 98±0. 15a
	C2	26. 10±1. 22a	23. 87±1. 05ab	13.19±0.34b
	C3	25.83±1.10a	24. 90±0. 60a	14.15±0.08a
Annong 0711	A1	25. 23±0. 81a	17. 90±0. 60de	8.96±0.20e
	A2	24. 43±0. 67a	17.57±0.75e	7.73±0.46f
	A3	25. 47±1. 11a	18.20±0.40adc	9.16±0.06e
	B1	24. 83±0. 55a	19. 60±0. 40abc	11. 37±0. 37c

© Proceedings of the 2019 Agronomy Australia Conference, 25 – 29 August 2019, Wagga Wagga, Australia © 2019. www.agronomyaustralia.org/conference-proceedings

B2	25. 50±0. 92a	19. 20±0. 50bcd	10. 75±0. 28d
B3	24. 90±0. 61a	20. 90±1. 20a	12. 32±0. 51ab
C1	25.63±1.00a	21. 00±0. 70a	12. 53±0. 45a
C2	25. 00±0. 72a	20. 50±1. 50ab	11. 72±0. 28bc
C3	25. 43±0. 61a	21. 10±0. 60a	12. 72±0. 16a

10DAF: 10 d after flowering (prior to high temperature treatment); 20DAF: 20d after flowering (in high temperature treat); 30 DAF: 30 d after flowering (post high temperature treatment); Different lowercase letters in the same column indicate significant difference at 5% level.

Cultivar	Treatment	10 DAF	20 DAF	30 DAF
Huaimai 33	A1	53. 97±2. 15a	52. 31±2. 66bc	34. 17±0. 55c
	A2	52. 90±2. 00a	50. 25±2. 49c	31. 70±0. 81d
	A3	54. 80±2. 12a	53.21±0.05bc	34. 80±1. 65c
	B1	55. 57±2. 27a	55. 62±1. 27ab	42.70±1.34ab
	B2	55. 80±1. 2a	54. 11±0. 53ab	41.87±1.31b
	B3	56. 80±2. 08a	55. 94±0. 60ab	43.73±0.67ab
	C1	56.00±1.31a	55. 83±1. 17ab	43.87±1.00ab
	C2	56. 07±1. 00a	54. 9±2. 05ab	42.47±1.45b
	C3	54. 80±2. 16a	56. 16±0. 67a	44. 60±0. 79a
	A1	50. 57±1. 34a	48.56±0.20c	32. 60±1. 4b
Annong 0711	A2	49. 23±2. 80a	48.22±1.15c	30.50±1.66b
	A3	50. 97±0. 47a	48.14±0.98c	33.30±1.04b
	B1	49. 77±2. 12a	50. 64±0. 20ab	42.07±1.12a
	B2	48.33±1.84a	49.20±2.19b	41. 10±1. 80a
	В3	49. 80±1. 48a	51. 53±0. 23ab	43. 87±0. 35a
	C1	50. 37±1. 50a	50. 71±0. 46ab	43. 07±0. 51a
	C2	49.83±1.24a	49.60±1.76b	42. 93±0. 67a
	C3	50. 03±1. 70a	52. 23±2. 43a	44. 20±0. 30a

Table 2. Effects of spraying KH₂PO₄ and BR on SPAD of wheat flag leaf under high temperature

10DAF: 10 d after flowering (prior to high temperature treatment); 20DAF: 20d after flowering (in high temperature treat); 30 DAF: 30 d after flowering (post high temperature treatment); Different lowercase letters in the same column indicate significant difference at 5% level.

2.2 Effect of spraying KH₂PO₄ and BR on wheat yield under high temperature

The effect of spraying KH_2PO_4 and BR on wheat 1000-grain weight and theoretical yield under high temperature was similar with the effect on Pn and SPAD (Table 3) with $KH_2PO_4 > BR > CK$, but there was no significant difference between KH_2PO_4 and BR in the increase of grain number per ear. Huaimai 33 and Annong 0711 had a similar effect. The results indicated that high temperature at DAF12-18 could significantly reduce wheat yield through reduce 1000-grain weight, and spraying KH_2PO_4 had the better effect of alleviating high temperature harm. Compared with CK, spraying KH_2PO_4 and BR at different stages could increase 1000-grain weight and yield, and pre-high temperature prevention and post-high-temperature remediation could better alleviate grain-filling high temperature harm and maintain high 1000-grain weight and stable yield.

Table 3. Effects of spraying KH₂PO₄ and BR on yield and its components under high temperature

Cultivar	Treatment	Spike number (ten thousand · hm ⁻²)	Grain number per spike	1000-grain weight (g)	Theoretical yield (kg· hm ⁻²)
Huaimai 33	A1	630.36±6.41a	35. 45±1. 05d	33. 74±0. 62e	7,537.19±133.40f

© Proceedings of the 2019 Agronomy Australia Conference, 25 – 29 August 2019, Wagga Wagga, Australia © 2019. www.agronomyaustralia.org/conference-proceedings

	A2	629.71±11.00a	35. 23±1. 47d	33.96±0.26e	7,529.05±158.01f
	A3	631.05±9.57a	36. 07±0. 82cd	34. 64±0. 58d	7,881.09±114.14e
	B1	632.37±4.51a	37.18±0.37abc	36. 57±0. 05b	8,597.10±71.59bcd
	B2	631.71±4.98a	36. 57±1. 54cd	35.97±0.01c	8,308.92±269.15d
	B3	632.03±5.23a	38. 31±1. 06ab	36. 78±0. 10b	8,906.92±352.33ab
	C1	634.71±10.18a	37. 40±70. 27abc	36. 68±0. 20b	8,705.92±122.23bc
	C2	632.71±9.68a	36. 69±0. 65bcd	36. 31±0. 09bc	8,428.85±184.19cd
	C3	634.37±2.78a	38. 49±0. 30a	37. 81±0. 20a	9,232.42±143.41a
	A1	623.00±14.26a	30. 20±1. 43cd	32. 48±0. 08cd	6,108.12±195.08e
	A2	621.66±8.37a	29. 94±1. 77d	32. 22±0. 18d	5,994.29±266.52e
	A3	623.33±8.10a	30. 85±1. 97bcd	32. 94±0. 52c	6,331.71±346.21de
	B1	623.33±11.90a	32. 63±0. 57ab	34. 32±0. 26b	6,938.54±173.03b
Annong 0711	B2	623.02±5.24a	30. 93±0. 58bcd	33.88±0.80b	6,529.45±144.90cd
	B3	624.33±4.30a	32. 49±0. 22ab	33. 95±0. 34b	6,886.95±105.16bc
	C1	625.33±8.02a	33. 45±1. 05a	34. 42±0. 22b	7,199.60±209.27ab
	C2	624.66±13.15a	32. 11±0. 43abc	34. 34±0. 09b	6,889.04±200.04bc
	C3	625.99±12.62a	33. 76±1. 66a	35. 63±0. 05a	7,524.00±213.32a

Different lowercase letters in the same column indicate significant difference at 5% level.

Conclusion

Spraying KH₂PO₄ and BR can help alleviate high temperature impacts on grain-filling in wheat by increasing the flag leaf Pn and SPAD, as well as 1000-grain weight and thus grain yield of wheat. It is shown that spraying KH₂PO₄ had the better effect than did BR in dealing with high temperature. The time to spray prior to onset of heat stress, or post has similar effects, both better than spraying during heat stress. These findings will be valuable in cultivation coping with terminal heat stress.

References

- Caffe-Treml M, Glover KD, Krishnan PG, Hareland GA, Bondalapati KD, Stein J (2011). Effect of wheat genotype and environment on relationships between ough extensibility and bread making quality. Cereal Chemestry. 88, 614-617.
- Dixon J, Braun HJ, Kosina P, Crouch J (2009). Wheat facts and futures. CIMMYT, Mexico.
- Hays D, Mason E, Hwa Do J, Menz M, Reynolds M (2007). Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat (T. *aestivum*). In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Amsterdam, pp 373-382.
- Li Y, Wang HG, Li RQ (2015). Effects of epabarabinolide on photosynthetic characteristics and substance production of winter wheat after anthesis. Journal of Hebei Agricultural University. 1, 1-8.
- Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013). Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics 27, 463-477.
- Yang XJ, Ju H, Wang ZS (2015). Effects of post-anthesis high temperature and drought on photosynthesis, antioxidant properties and grain weight of winter wheat. Journal of Triticeae Crops 35, 958–963.
- You L, Rosegrant MW, Wood S, Sun D (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology. 149,1009-1014.

[©] Proceedings of the 2019 Agronomy Australia Conference, 25 – 29 August 2019, Wagga Wagga, Australia © 2019. www.agronomyaustralia.org/conference-proceedings