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Abstract 
Providing reliable, consistent and scalable crop yield data is one of the major challenges in monitoring food 
security. This study aims to improve in-season wheat yield prediction by coupling crop modelling and satellite 
images. We have developed a nano satellites-based method to detect crop sowing date of grower’s fields, as 
well as a technique to fuse PlanetScope images (with a spatial resolution of ~3m) and Sentinel-2 images (10m) 
to create high-resolution datasets of spatio-temporal variation in crop Leaf Area Index (LAI). Finally, we will 
attempt to use the detected sowing dates and the LAI datasets with the APSIM-Wheat model to predict wheat 
yield within fields. We shall attempt to predict yield without ground calibration, in a bid to develop a method 
that is applicable broadly across environments.  
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Introduction 
With a gross value of $7.3 billion, wheat is the main winter crop grown in Australia, covering more than 11 
million ha of Australian farmland (Australian Bureau of Statistics, 2019). However, risks and uncertainties 
within the global food system are growing with the projected increase in extreme weather events due to climate 
change. These uncertainties may affect the variability of food prices in the short and long term. One approach 
to address these uncertainties is the development of new technologies and techniques for precision agriculture, 
along with improved approaches and tools for crop yield prediction over large regions. Many studies have 
shown a linear relationship between photosynthetic capacity estimated from spectral responses and crop 
phenology, relationships that can be used to predict wheat yields using satellite remote sensing  (Becker-Reshef 
et al., 2010). Using a unique linear relationship is not ideal, especially when crops experience highly variable 
environmental conditions, as in Australia, where crops are frequently stressed by heat waves, frost and drought 
(e.g. Chenu et al., 2013). Numerous studies have attempted to predict wheat yields using remote sensing. 
However, most of them heavily relied on detailed official crop statistics (e.g. Becker-Reshef et al., 2010) and 
in-situ measurements (e.g. Jin et al., 2017) to develop empirical forecasting models. Such models typically 
have applications limited to the regions where they were calibrated (using ground data), and a lower prediction 
accuracy when applied to other situations. Only a few studies have attempted to predict yields without ground 
calibration (e.g. Azzari et al., 2017; Lobell et al., 2015). Similarly, only a few studies have tried to predict yield 
at a field scale using remote sensing (e.g. Burke & Lobell, 2017; Donohue et al., 2018). Their success has been 
limited. 
Over the last decade, the number of companies developing nano satellites (also known as CubeSats) has 
increased. These new satellites, such as PlanetScope, which typically are as big as a shoe box and weigh less 
than 10 kg, are relatively inexpensive to mass produce, thereby enabling the creation at low cost of large image 
collections with a high level of spatial (<5 m) and temporal resolution (<1 week) (Jain et al., 2016). However, 
contrary to outputs from larger and expansive satellites such as Sentinel-2 or Landsat, the images obtainable 
from nano-satellites constellations frequently suffer from inconsistency in the data collected by different 
satellites in the constellation (Houborg & McCabe, 2016). Such inconsistencies may limit the accuracy of 
surface reflectance-based applications such as estimation of vegetation indices and LAI.  
The objective of this study is to predict wheat yield in grower’s fields by coupling fused high spatio-temporal 
resolution remote sensing data and crop modelling.  
 
Methods 
In this study, space-borne remote sensing data will be combined with crop modelling to predict in-season 
wheat yield in three stages. While the first two stages have already been completed, the methodology of the 
third one is under development. First, a nano satellites-based method was developed to detect sowing date of 
grower’s fields (Sadeh et al., 2019). The method detects changes between consecutive PlanetScope (PS) nano-
satellite images (from Planet Labs Inc.) and assumes that sowing corresponds to the first detectable field-scale 
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change in the surface after the harvest of the previous crop, as expected for the widely-used no-tillage farming 
practice (Figure 1). In the next stage, PlanetScope images (daily revisit time with a spatial resolution of ~3m) 
and Sentinel-2 (S2) images (5-days revisit time with a resolution of 10 m) were fused to create daily surface 
reflectance images (Figure 2). This enabled us to calculate different remotely-sensed vegetation indices, which 
were then used to estimate daily leaf area index (LAI) datasets at a spatial resolution of 3 m. In the third stage, 
the detected sowing dates will be used as inputs for the crop model simulations, as well as the weather data 
from the considered field (from SILO), a combination of nearby soils (based on grid data), a combination of 
representative local management practices, and genotypes contrasting for their maturity. As APSIM outputs 
crop characteristics daily, the different simulated LAI patterns will be compared to the remotely-sensed LAI 
for each pixel of the field image to choose the most-suited simulation (i.e. best combination of soil x 
fertilisation x genotype). Using short-term climate forecast, the selected simulations will be pursued up to the 
end of the season to forecast grain yield with a 3 m resolution in the studied field for the current season (Figure 
3). 
 

 
Figure 1. Sowing-detection workflow. Inputs are in light-grey boxes. Adapted from Sadeh et al. (2019). 
 

 
Figure 2. Data fusion of PlanetScope (with a spatial resolution of ~3 m) and Sentinel-2 (10 m) imagery. 
 

 
Figure 3. Framework of the proposed methodology that combines satellites data and crop model to predict yield. 
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Discussion and Results 
Predicting crop yield from space is challenging, which is mainly hindered by the spatial and temporal 
resolutions satellites, and also by the ability to translate reflected radiation from the crops to biophysical data. 
Our study aims to overcome some of these limitations by coupling fused high spatio-temporal resolution 
remote sensing data and crop modelling. As sowing dates of individual fields greatly influence yield (Flohr et 
al., 2017), their accurate identification from the high spatio-temporal PlanetScope data can reduce the 
uncertainty of simulating yield with crop modelling. The method to detect sowing dates (Figure 1) was found 
to be robust and simple, and could be applied over a wide range of soil types, atmospheric conditions, crop 
types and sensors (Figure 4). The method detected 85% of the sown fields with Rଶ = 0.99 (Figure 5) and 
succeeded in identifying the actual sowing dates of individual fields with a median gap of 0 days and an 
unparalleled RMSE of 0.9 and 1.9 days in a set of national trials and in 55 fields of one commercial farm, 
respectively. 
 

 
Figure 4. Sowing detection of a field (boundaries in yellow) using two satellite images from different dates (A and 
B). Significant changes (red) between the images found based on a PCA approach (C). These changes were used to 
classify the image into change/no-change classes (D) and estimate the sown area (green, E). Adapted from Sadeh et al. 
(2019). 
 
Preliminary results from the PlanetScope and Sentinel-2 data fusion have shown that the method (Figure 2) is 
able to produce daily surface reflectance images with a 3 m resolution. This new dataset was used to calculate 
13 selected vegetation indices known to be highly correlated with LAI, and convert them to LAI estimates. A 
linear regression between the different vegetation indices was used to resize LAI time-series, and produce 
daily LAI images with the quality of Sentinel-2 which has a lower spatio-temporal resolution (Figure 6). 
 

 

 

The method for fusing PlanetScope and Sentinel-2 data combines the advantages of both sensors and enables 
us to create daily vegetation-index images in a spatial resolution of 3 m, and with the accuracy of Sentinel-2 
data. The fused datasets can be used to monitor crops on a daily basis and create high spatio-temporal resolution 
LAI images with the quality of Sentinel-2, which have a strong correlation with the crop LAI (e.g. Herrmann 
et al., 2011; Nguy-Robertson et al., 2014). Finally, this study will use the APSIM-Wheat model in a bid to 
predict wheat yields during the season in surveyed fields located in different locations across Australia. APSIM 
provides outputs on daily crop attributes, including LAI and yield. Predicting grain yield will be conducted by 
choosing the most-suitable combination of genotype x soil x fertilisation, based on the correlation between the 

Figure 5. Correlation between the 
reported and detected sowing dates 
of 16 NVT fields and 50 fields from 
a farm at Birchip, Victoria. 

Figure 6. Daily 3 m LAI estimates created by fusing PlanetScope 
(PS) and Sentinel-2 (S2) data. The initial fused PS and S2 LAI is 
presented in black, while the blue line corresponds to the data after 
performing the auto field-based calibration. The S2 LAI values are in 
orange. 
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remotely sensed LAI and APSIM-simulated LAI. This type of approach has already been tested by a number 
of studies (e.g. Azzari et al., 2017; Jin et al., 2017; Lobell et al., 2015), but their yield estimations did not 
achieved high accuracy, including when focusing at the field-scale (e.g. Burke & Lobell, 2017; Jain et al., 
2016). However, our study will narrow the possible range of conditions by (1) using sowing dates identified 
for the considered crop, (2) focusing on the weather data from the nearer station, and (3) focusing on soil 
characteristics found nearby the field of interest. Furthermore, we will use more frequent LAI images per 
growing season, a strategy pointed out by a number of studies as a promising way to improve the accuracy of 
the yield predictions (e.g. Burke & Lobell, 2017; Jain et al., 2016; Jin et al., 2017). These studies suggested 
that the long revisit time of the satellites, in addition to the presence of clouds in the images, may cause them 
to miss the peak LAI of the season, and therefore increased the bias from the reported yield. Our approach 
(Figure 3) will increase the chances to have more clear-sky images by using the daily-fused LAI images. We 
believe that this proposed method, which does not rely on ground data, has the potential to improve in-season 
yield predictions at the field scale. 
 
Conclusion 
In-season yield predictions at a field scale could be improved by combining fused PlanetScope and Sentinel-2 
data, with crop modelling. To reduce part of the uncertainties in simulating yield for a specific field, new 
methods were developed to (i) detect when this field is sown, and to (ii) fuse data from different satellites to 
enable daily monitoring of LAI at field and sub-field scales. Outputs of these methods will be used to narrow 
down the ensemble of possible yields simulated with a crop model. Overall, the approach is designed to be 
more accurate and applicable more broadly than previous methods (i.e. without ground calibration data).  
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