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Abstract 
Existing crop yield models typically estimate paddock-scale yields across small areas, or regional-scale 
yields nationally.  This dichotomy restricts our ability to scale between paddock, region and country yields.  
We developed a nation-wide, paddock-scale crop yield model based on satellite imagery, called CCrop.  For 
its simplicity, C-Crop is effective at estimating canola and wheat yields, with about 70% accuracy.  Ongoing 
model refinements will improve accuracy, encompass more crop types and perform mid-season forecasting.  
Coupled with crop type maps, C-Crop now provides the ability to conduct nation-wide, fine-scale monitoring 
of Australian grain production. 
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Introduction 
An ideal crop yield model predicts yields at paddock scales across large areas, even up to a national extent.  
However, a general trade-off exists between local scale accuracy and geographic extent, meaning that such 
an ideal model is difficult to achieve (Lobell 2013; Strand 1981).  Examples of locally accurate but 
geographically restricted models are APSIM (Holzworth et al. 2014) and CERES-Wheat (Ritchie and Otter 
1985) whereas an example of the opposite is that of Potgieter et al., (2005). 
 
In Australia, the development of a paddock-scale, national yield model has been inhibited by the absence of 
suitable data that are both fine-scale and national extent for model parameterisation and calibration (Gobbett 
et al. 2016).  Recently, a major step in overcoming this obstacle has been the collection and collation, from 
across Australia, of high-resolution paddock yield data acquired from grain harvesters fitted with yield 
monitoring equipment. 
 
With the aim of producing a paddock-scale, national yield model for Australia, we recently developed C-
Crop, a highly simplified remote-sensing-driven grain yield model (Donohue et al. 2018).  Here we provide 
an overview of C-Crop and present some preliminary results assessing the use of C-Crop in a forecasting 
mode. 
 
Methods 
The C-Crop model  
C-Crop uses elevation, air temperature and satellite-derived greenness data as inputs (along with an 
indication of crop type).  From these 4 inputs, the gross and net photosynthetic fluxes are estimated 
throughout the growing season, along with the total above-ground carbon mass of the crop.  There is one 
crop-specific parameter (a crop-specific maximum photosynthetic rate) and two fitted parameters (the mean 
tissue respiration rate at 10C and the mean tissue longevity).  The latter have been calibrated such that the 
mass estimate at harvest is effectively the yield prediction.  Sowing and harvest dates are set at mid-April 
and mid-October.  The model runs at a 250 m grid resolution, and at a 16-day time-step.  See Donohue et al. 
(2018) for more details. 
 
The model was calibrated at the paddock scale, using cross-validation, drawing on 31 harvester-derived 
paddock yield maps for canola and 160 for wheat.  Calibration minimised the difference between the 
predicted (mid-October) and observed paddock yields. 
 
Mid-season forecasting 
We explored how well C-Crop performs in a simplistic forecasting mode.  To do this we calibrated the 
model every 16 days starting in June, minimising the difference between each date’s modelled carbon mass 
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and the end of season, harvester-derived yields. This produced a separate parameter set for each date of 
forecast. 
 
Results 
Canola and wheat yields were predicted with errors of 0.54 and 0.73 t ha-1, respectively (which equate to 
relative errors of 33 and 32%; Figure 1).  While these are reasonably large errors, they are notable in that 
they are paddock-scale errors, derived using national-extent input datasets and a very simple crop model. 
 
a) b) 

 
Figure 1.  Assessment of C-Crop yield estimates against harvester-derived paddock yield values for canola (a) 
and wheat (b).  RE is the relative error, calculated as the RMSE divided by the mean yield.  The goodness of fit 
statistics are from the validation runs of the original cross-validation analysis.  Reproduced from Donohue et al. 
(2018). 
 
The performance of C-Crop in forecasting mode is shown in Figure 2.  The correlation coefficient remained 
fairly constant through all prediction months at 0.6 – 0.7.  In contrast, there is a marked temporal progression 
in the errors.  Predictions made prior to August had very high errors (especially for canola), and indicate that 
early-mid season predictions are highly unreliable.  However, from August onwards errors dropped to 
around 30-50%, culminating in the lowest errors (~33%) at the notional time of harvest. 
 
a) b) 

Figure 2.  Assessment of C-Crop yield predictions made at sequential times throughout the growing season for 
canola and wheat.  Plot a) shows the r2 and plot b) shows the relative error, calculated as the RMSE divided by 
the mean yield. 
 
 
One way to use these forecasts that minimises the effects of the high errors (assuming the errors are 
relatively constant across years) is seasonal profiling (or seasonal analogues; Figure 3).  This compares 
current season forecasts to equivalent forecasts from previous years, allowing for an assessment of whether 
this season is tracking as a good, average or poor season.  With C-Crop, such seasonal profiling can be done 



© Proceedings of the 2019 Agronomy Australia Conference, 25 – 29 August 2019, Wagga Wagga, Australia © 2019. 
www.agronomyaustralia.org/conference-proceedings  

3

at a state level (Figure 3a) or for an individual paddock (3b) with equal ease (as long as underlying crop type 
information is available). 
 
a) b)

 
Given the  
  
 

Figure 3.  Progression of 2018 yield forecasts (as at mid-August) compared with previous year’s seasonal forecast 
profiles.  Plot a) shows the profiles for all of WA’s croplands (which, for convenience of example, assumes all 
crops were wheat).  Plot b) shows the profiles for a single wheat paddock in WA. 
 
 
 
 
 
 
 
 

 
Conclusion 
While C-Crop yield estimates are perhaps surprisingly accurate given the simplicity of the model, the model 
needs further improvement to increase its accuracy to be of maximum value to growers and the grain 
industry.  The use of C-Crop depends on having underlying crop type information, and contemporary 
national crop type maps are required before national yield assessments can be performed.  These two issues 
are the focus of ongoing research. 
 
Used in a very simplistic forecasting mode, C-Crop provides moderate-accuracy yield predictions that are 
most usefully employed in a historically relative mode.  We are now seeking to incorporate meteorological 
forecasts into C-Crop in order to increase the yield forecast accuracies. 
 
C-Crop yield estimates can currently be made with an approximate 30-day latency.  We are working to 
generate a rapid version of C-Crop with a latency of 7 days or less. 
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