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Abstract 
Inter-annual national crop yields fluctuate due to area planted, management strategies, prevailing weather 
conditions, weeds, diseases, and pests. High temporal and spatial variability in grain production  makes 
nationwide crop yield prediction challenging. The present study developed a model combining semi-physical 
and empirical approaches to estimate yield of major crops (i.e., canola, wheat and barley) across the 
Australian dryland wheatbelt using a remote sensing (RS) based radiation use efficiency approach and 
meteorology-driven Stress Indices (SI). Crop specific stress indices (e.g., drought, heat and cold stress) in 
critical months (e.g., anthesis and grain-filling) were used to explain the impact of highly variable (in both 
space and time) actual grain yield across the wheatbelt. The present model, Crop-SI, reduces the field-scale 
prediction error rate by ~20% when compared with existing models for nationwide crop yield simulations. 
Our finding have improved the predictive capability of RS-based models for crop yield for a wide range of 
variability in meteorological conditions by incorporating rainfall and temperature into the simulation and 
provides new insights for the next-generation of nationwide agricultural yield models. 
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Introduction 
Crop yield can be predicted by physical, empirical, and semi-empirical approaches (Lobell, 2013; Holloway 
and Mengersen, 2018). The physical models (e.g. the Agricultural Production Systems sIMmulator – APSIM 
and WOrld FOod Studies – WOFOST; van Diepen et al., 1989; Keating et al., 2003; Holzworth et al., 2014) 
can explain crop growth at point-level in space on the basis of underlying interactions among genotype, 
environment, and management strategies but require detailed inputs of data about local soils, crop 
management, and prevailing weather conditions to predict yield (Holzworth et al., 2014). The 
parameterisations used in such models have limited validity over large areas, as weather conditions, soils and 
farmer management can change over short distances (Lobell, 2013).  
 
The empirical models often relate yield observations to remotely-sensed variables like vegetation indices 
(VIs; Ferencz et al., 2004; de Wit and van Diepen, 2008). These VIs provide an indication of plant 
biophysical condition and above ground biomass (Pinter Jr et al., 2003). Many of these empirical models are 
specific to agrology and climate; therefore, they cannot be applied to multiple regions exhibiting high spatial 
variability in agricultural production.  
 
Semi-empirical models focus on the biochemical mechanism of photosynthesis, dry matter (biomass) 
accumulation, and water consumption, and use linear relationships (e.g. harvest function) for yield estimates 
(Mo et al., 2005). The RS-based harvest function cannot be downscaled to the field level because the harvest 
index (HI) needs to be calibrated according to diverse climatic and soil conditions (Gaiser et al., 2010). The 
present study aims to improve the nationwide semi-empirical RS-based crop yield estimation by relating 
carbon estimation to drought, cold, and heat stress for canola, wheat, and barley in Australian wheatbelt.  
 
Methods 
Data 
We used 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 satellite 
data to estimate crop yields at both field and national scales. MODIS provides at best daily observation of 
canopy-level Normalized Difference Vegetation Index (NDVI; Colwell, 1974), which can be used to 
estimate photosynthetic activity globally at 250 m resolution.  
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Yield estimation 
Figure 1 describes the framework implemented for the semi-empirical model for crop yield estimation. The 
grain yield model was developed by relating remotely sensed carbon fixation to actual yield while 
accounting for meteorology-driven environmental stresses.  
 

ݕ ൌ ܽ ⋅ ܥ ൅ ܾ ⋅ ܫܵ ൅ ݀                                                            (1) 
 

where y is the estimated yield (t/ha), C is a remotely sensed indicator of carbon fixed by plants during the 
growing season (gC/m2), and a, b, and d are the model coefficients. SI (see Table 1) were selected and 
integrated from the meteorological variables using Support Vector Machines (SVMs; Weston et al., 2001) to 
maximize their correlation with the actual yield. The non-SI (b = 0, d = 0) and SI-based models are compared 
to analyse the contribution of SI to improvement in the yield prediction. 
 

 
Figure 1. The implementation flowchart of the Crop-SI estimation. The shaded frames indicate the model 
required parameters and the dashed frames illustrate the links between parameters. 
 
Table 1. Meteorological-driven accountability of crop yield estimation from 2009 to 2015. 

Meteorological 
variables at each 
calendar month (m) 

Explanation 

Tmax(m) mean daily maximum temperature (°C) across each month from April to November (m:4-
11) 

Tmin(m) mean daily minimum temperature (°C) across each month from April to November (m:4-
11) 

P(m)  mean monthly precipitation (mm) across each month from April to November (m:4-11) 
H(m)  numbers of days of heat stress: Tmax ≥ 32.0 °C (d) from August to September (m:8-9) 
F(m)  numbers of days of frost stress: Tmin ≤ -2.0 °C (d) from May to September (m:5-9) 

 
Carbon fixation 
The carbon fixation (C) was derived using a radiation use efficiency (RUE) approach. For unstressed plants, 
RUE and the fraction of photosynthetically active radiation (fPAR) are conventionally used to estimate net 
carbon fixation (Monteith, 1972; Monteith, 1977; Mo et al., 2005). Growing season carbon fixation is given 
as:  

ܥ ൌ ׬	 ሺ݅ሻܲܲܩ
௜೘ೌೣ

௜೘೔೙
∆௜                                                               (2) 

 
where GPP is gross primary productivity (gC/m2/d).	ܲܲܩ can be estimated by ܴܲܣ௜ ⋅ ௜ܴܣ݂ܲ ⋅ ௜ܧܷܴ , where i 
is the time step of the model (16-days) (Monteith, 1972; Monteith, 1977; Leblon et al., 1991), imin and imax 

represent the beginning and the end of the growing season.  
 
Calibration and validation 
The total of 291 field-year combinations were available, and these observations were randomly split into 
three independent datasets for calibration (60% of the field-years), test (20% of the field-years), and 
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validation (20% of the field-years). To avoid autocorrelation issues arising from pixels being used for the 
same field-years in both calibration and validation sets, pixels from one field-year could only be in one of the 
two datasets. Pixel-level cross-validation was used to optimise the parameters used in Equation 1. 
 
Results and Discussion  
The independent validation set was used to compare the results with a widely used harvest function (HF; 
Whisler et al., 1986) and a carbon turn-over model (C-Crop; Donohue et al., 2018). Figure 2 shows that for 
pixel-level yield prediction, the HF underestimates yield prediction, the predicted yield is linearly correlated 
to the observed values with a coefficient of determination (R2) of 0.68, 0.77, and 0.43 for canola, wheat, and 
barley, respectively. Relative to HF, C-Crop performed better for pixel-level yield prediction and reduced the 
Root Mean Square Error (RMSE) from ~1 t/ha to ~0.5 t/ha and from ~2.3 t/ha to ~0.8 t/ha, for canola and 
barley, respectively (Figure 2). The Crop-SI produced the highest R2 for canola (0.82) and barley (0.71) and 
the lowest RMSE of ~0.5 t/ha across all three crops. For barley and canola it was able to explain an extra 
18% and 12% of variability, respectively, with a reduction of RMSE by ~0.3 t/ha for barley. 
 

 
Figure 2. Scatter plots comparing modelled and observed canola (n = 1,606), wheat (n = 12,388), and 
barley (n = 2,508) yields on 250 m pixel-level. From left to right, the 1st column shows HF predicted yields 
against the observed values; the 2nd column is the C-Crop estimated yields against the observed values; 
the 3rd column demonstrates Crop-SI predicted yields against the observed values. From top to bottom, 
the 1st, 2nd, and 3rd row shows the model comparisons of canola, wheat, and barley yield, respectively.  

 
This improvement in predictive accuracy illustrates that meteorological variability strongly influences the 
yield variation given the carbon production for cereals (i.e., wheat and barley) across Australia. While yield 
models such as C-Crop (i.e., ݕ ൌ ܽ ⋅  adequately explain actual yield variation, their performance can be (ܥ
improved as evidenced by lower (higher) values of RMSE (R2) when extended to include the SI (See Table 
2). For instance, during ‘haying off’ more aboveground biomass early on in the season leads to a reduction in 
tiller economy and an inability to complete grain filling (Van Herwaarden et al., 1998). Meteorological 
variables, therefore, should be used for regional to national scale yield estimation by accounting for spatial 
and temporal heterogeneities in the plant RUE to improve the yield model prediction across multiple climatic 
zones.  
Table 2. Statistical performance of the calibrated yield model with and without SI on 250 m pixel-level for 
canola, wheat, and barley. For each crop the number of 250 m pixels in the validation dataset are reported, in 
order, after the crop name.  
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Model validation at pixel-level Non-SI model SI model
Crop (mean observed yield (t/ha), 
number of the pixels) 

R2  RMSE 
(t/ha) 

R2  RMSE 
(t/ha) 

Canola (1.5 t/ha, 1,606) 0.47 0.59 0.82 0.50
Wheat (2.2 t/ha, 12,388) 0.68 0.65 0.74 0.54 
Barley (2.5 t/ha, 2,508) 0.58 0.62 0.71 0.49 

 
Future study should contribute to extensive yield map collection. Crop-SI should be tested using finer spatial 
resolution data (e.g. Landsat and Sentinel 2) to provide more detailed information for practical and profitable 
decision making at sub-field scales.  
 
Conclusion 
There is considerable demand for regional to national-scale grain yield estimation during the cropping season 
by growers, grain marketers, grain handlers, agricultural businesses, and market brokers. This study 
developed a parsimonious, robust and repeatable method with improved predictive accuracy to estimate 
regional and nationwide crop yield by combining gridded meteorological data with a remotely-sensed 
description of plant carbon fixation during the growing season following a radiation use efficiency approach.  
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