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Abstract 
Cold temperatures at critical reproductive stages impacts chickpea yield, limiting its adaptation under diverse 
agro-climatic regions. Crop growth models provide an opportunity to predict yield performance under 
diverse climates and identify varieties for target environments. We examined the efficacy of the Agricultural 
Production Systems Simulator (APSIM) to simulate observed chickpea grain yields, and quantify the impact 
of low temperature stress on yield. It is difficult to easily define temperature stress, as low temperatures 
along with the duration of stress are likely to have a considerable effect on pod set and yield. Therefore, we 
developed seven chilling day-degrees indices to assess the effects of chilling temperatures in chickpeas. 
There was no significant correlation between chilling indices and observed grain yield suggesting that the 
current model does not predict the effect of chilling temperatures on yield. This is likely due to a 
combination of multiple abiotic stresses including frosts and other low temperatures. Using a Regression tree 
model, we assessed yield responses to chilling indices across 75 trials. Our analysis showed that the most 
severe chilling index (minimum threshold temperature <10oC) may have contributed to most of the variation 
in yield variability across the 75 locations. Consequently, this study identifies cool temperature damage as a 
valuable parameter for improving the chickpea yield prediction ability of the APSIM model. 
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Introduction 
The cultivated area (1,068,000 ha in 2016/2017) under chickpea (Cicer arietinum L.) has recently increased 
in Australia due to higher prices, and profitable options to break disease cycles in rotational cereal crops 
(GRDC 2011; ABARES 2019). However, most chickpea production in Australia has a high risk of short and 
intermittent periods of chilling temperatures (average ambient temperature of <15oC) during the reproductive 
stage. Exposure to this stress typically results in flower and pod abortion and subsequent yield loses, 
especially in the Mediterranean-type of climate in Southern Australia (Berger et al. 2004). In this study, field 
experimental data were used to validate the Agricultural Production Systems Simulator (APSIM) model for 
chickpea (Robertson et al. 2002). Long-term chickpea simulated yield, as well as observed NVT trial data, 
across multiple Australian locations were then utilized to elucidate relationships between chickpea yield and 
a suite of chilling ‘day-degree’ indices. These results can assist in the prediction and interpretation of 
chickpea yield under different low-temperature scenarios. 
 
Methods 
The APSIM-chickpea model (Robertson et al. 2002; Holzworth et al. 2014) was parameterized and 
phenology parameters were calibrated for cultivar PBA HatTrick using field data (2014-2017 inclusive) at 
Roseworthy in South Australia, Wagga Wagga and Yenda in NSW. Soils and agronomic practices 
representative of each site were obtained from previous studies (Sadras et al. 2016; Xing et al. 2017) and 
from experienced agronomists. The climatic data (patched-point) was obtained from the SILO website 
(https://legacy.longpaddock.qld.gov.au/silo/ppd/index.php). The performance of the APSIM-chickpea model 
was evaluated using three measures of “goodness-of-fit”: Root Mean Square Error (RMSE), Willmott’s 
Index of Agreement (d) (Willmott 1982), and the coefficient of determination (r2) between observed and 
simulated yields. 
 
Since using simple daily average temperatures gave only poor correlations with simulated yield (data not 
shown), we therefore calculated Cumulative chilling ‘day-degree’ indices using seven different threshold 
temperatures (Table 1). We chose these temperatures because the literature suggests that post-anthesis 
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temperature below 15oC can cause pod abortion, inhibit pod-set and subsequent yield losses (Croser et al. 
2003; Berger et al. 2004); 16oC was included as a buffer. We then calculated for each day the number of day-
degrees below each threshold using the daily minimum temperatures (extreme affects). If the threshold was 
not exceeded (i.e. lower), then the chilling value was set to zero for that day. These chilling values were then 
summed across the reproductive stage for each year x location combination for field experimental sites and 
for the NVT trials (www.nvtonline.com.au) (comprising 75 experiments across 44 sites in 2013 only) where 
we had observed yield data available. The yield data for the experimental sites was the mean for a single 
genotype across all replicates; whereas the NVT data was a site-mean-yield of all genotypes in that 
experiment. 
 

Table 1. Chilling ‘day-degree’ indices calculated during the phenological growth period from floral initiation 
to the end of grain-fill. MinT = minimum daily temperature (oC). 
Index Name Threshold temperature (oC) Calculated as Units 

cdd10 10 =10 – MinT, or zero if MinT > 10 Cumulative day_degrees
cdd11 11 =11 – MinT, or zero if MinT > 11 Cumulative day_degrees 
cdd12 12 =12 – MinT, or zero if MinT > 12 Cumulative day_degrees 
cdd13 13 =13 – MinT, or zero if MinT > 13 Cumulative day_degrees
cdd14 14 =14 – MinT, or zero if MinT > 14 Cumulative day_degrees 
cdd15 15 =15 – MinT, or zero if MinT > 15 Cumulative day_degrees 
cdd16 16 =16 – MinT, or zero if MinT > 16 Cumulative day_degrees

 
To elucidate relationships between chickpea yield and a suite of chilling ‘day-degree’ indices the 
Classification and Regression Tree (CART) model (De’ath & Fabricius 2000; Elith et al. 2008) was 
employed. We used the rattle package version 5.2 (Williams 2011) in the R software suite version 3.5.1 (R 
Core Team 2018) to perform the CART analysis. 
 
Results and discussion 
A comparison of APSIM simulated and observed flowering time and yield is shown in Fig. 1. The APSIM-
chickpea module explained 75% of the observed variability in flowering time with a RMSE of 11 days (Fig. 
1A). The model showed reasonable predictive capacity (r2=0.66, RMSE = 185 kg/h) for chickpea grain yield 
(Fig. 1B). These predictions were closer to 1:1 line and with higher r2 than Kaloki et al. (2019). Sources of 
error using the point sourced data may explain some of the variation between observed and APSIM 
simulated values as the temperature data used in our simulations are derived from the closest BOM 
meteorological station (Silo climate) for each of the three locations. Localised frosts or cool temperatures 
may have delayed emergence and flowering, having a significant effect on the length of some crop 
developmental stages. The observed yields ranged from 1100 to 2200 kg/ha and the model adequately 
predicted this range.  
 
           (A) 

 

            (B) 

 
Figure 1. Evaluation of APSIM-chickpea for cultivar PBA HatTrick showing observed v. simulated (A) flowering 
time and (B) yield at physiological maturity using experimental data from Roseworthy, Wagga Wagga and Yenda. 
The dashed diagonal line is the 1:1 line and insets are the values of RMSE, d and linear regression details. 

 
To identify sensitive chickpea growth periods that might account for variation in simulated yield, we plotted 
chickpea grain yield against cumulative growing season rainfall (Fig. 2A), which showed a significant, 
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positive (polynomial) relationship (r2=0.52, p<0.001). In contrast, when we examined the relationship 
between mean daily minimum and average temperatures (during the floral initiation to pod-fill period or end 
of grain-fill) with grain yield (data not shown) no significant effects were observed, similar to Lake et al. 
(2016). In addition, we saw no relationship between our chilling indices and observed grain yield (see Fig. 
2B for an example using cdd10). It remains a possibility that, since chickpea is an indeterminate plant, 
chilling damage to floral structures may be compensated for by more flowers and pods as soon as 
temperatures are above the critical threshold, resulting in yield ‘recovery’ (Berger et al. 2005), a 
phenomenon that the current APSIM model fails to adequately capture. 
 
       A        B 

Figure 2. The relationship of growing rainfall (A) and (B) chilling ‘day-degree’ during the period from floral 
initiation to the end of grain-fill. The yields in (A) are simulated chickpea yield (129 years) across 22 locations in 
Australia and the blue line is the linear or polynomial regression line. 

 
 

Observed chickpea yield (kg/ha) across 75 trials 

 
Figure 3. A classification and regression tree (CART) showing the results of the analysis of seven 
chilling ‘day-degree’ indices (cdd10 – cdd16, see Table 1) using the NVT trials and field experimental 
data. Each box contains the mean value of the group (yield in kg/ha) and the percentage of the total 
sample set (n=75). The bold text below each box shows the variable used for the next binary split, with 
the left of each split = “yes”, and to the right = “no”.  
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The CART tree shows how the full dataset of 75 trials is split four times to produce six final separate 
groupings for yield (Fig. 3). Most important, chilling index (“cdd10FI_GF”), conditioned the first split by 
resulting in an 18% yield difference between the two groups (1439 versus 1761 kg/ha) (Fig. 3). Further work 
is necessary to examine which ‘site/sowing time’ combinations are responsible for these groupings. After 
performing multi-year simulations for single sites using APSIM, we will examine the influence of chilling 
indices on yield using the CART analysis. 
 
Conclusion 
The APSIM chickpea model can predict flowering time and chickpea yield with reasonable confidence but 
there are some limitations in quantifying yield impacts of minimum temperature during flowering to pod set. 
Phenology and yield outcomes generated by APSIM can be used for further downstream analysis to 
understand the effects of chilling temperatures on yield. The CART analysis showed that the chilling ‘day-
degree’ indices alone were able to split the observations into six groups with widely different average yields 
(from 1161 to 2177 kg/ha). Ongoing model validation work, using 2018 experimental field trial data (Wagga 
and Tamworth) and NVT data from 2014-2018, may further improve model predictions. We plan to further 
examine phenological parametrization of the APSIM-chickpea model, along with temperature, rainfall, 
chilling effects, and photoperiod. 
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