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Abstract 

The establishment and communication of climatological forecast ‘skill’ are complex issues requiring 
simple approaches. The major issues are: (a) inappropriate use of significance testing to quantify signal 
intensity, (b) skewed probability distributions of time series of bio-physical data (such as rainfall, crop or 
pasture production) rendering parametric skill measures based on Normal distribution inadequate, (c) for 
a spatial assessment of forecast skill, the use of skill measures derived from parametric tests require 
location-by-location checking of assumptions about underlying distributions, making the process 
cumbersome and expensive, (d) the level of significance required for forecast skill to be useful depends 
on the user and the application rather than on an arbitrary, pre-determined significance level and (e) 
signal intensity varies temporally and spatially. Hence, we propose the use of p-values derived from non-
parametric tests such as the Log-Rank test as direct indicators of signal intensity. This method does not 
require any knowledge of the underlying data structure, nor does it require any arbitrarily chosen level of 
significance. Further, given adequate spatial coverage, p-values can be mapped using interpolation 
methods, providing a powerful and intuitive means of communicating the spatial variability of signal 
intensity. We illustrate this method by assessing the ability of a three-way ENSO classification in 
forecasting winter rainfall across Australia. 

Media summary 

To quantify the signal intensity (‘skill’) of forecast systems we have mapped p-values arising from non-
parametric tests applied to rainfall recording stations across Australia.  
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Introduction 

Sound agricultural risk management requires objective assessment of alternative probabilistic outcomes. 
In highly variable climates, seasonal climate forecasting in combination with simulation models of farming 
systems has therefore become a powerful tool for risk assessments and the evaluation of management 
options. A simple and intuitive way of connecting climate forecasts with such models is an ‘analogue year’ 
approach, whereby historical climate series are segregated into ‘year or season types’ resulting in sub-
series, strata or classes (‘conditional’ distributions) corresponding to climate indicators such as the 
Southern Oscillation Index (SOI), El Ni?o/ Southern Oscillation (ENSO) phases or Sea Surface 
Temperature (SST) phases (Meinke and Stone 2004). This approach has been used worldwide and has 
provided valuable information for decision makers managing climate-sensitive systems (Messina et al. 
1999; Phillips et al. 1999; Potgieter et al. 2002).  

These conditional distributions are frequently presented as cumulative distribution functions (CDFs) or 
their complement, probability of exceedance functions (POEs). They are a simple and convenient way to 
represent probabilistic information arising from a time series. Such representation is particularly valid for 
time series that exhibit no or only weak auto-correlation patterns. However, if the time series shows 
moderate to strong auto-correlation patterns, a CDF/POE summary will result in some loss of information. 
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Yearly sequences of rainfall data from a specific month or period exhibit only weak serial auto-correlation 
thus allowing the CDF/POE representation to convey seasonal climate forecast information (e.g. 
Selvaraju at al. 2004). 

For the evaluation of forecast ability, a statistical hypothesis testing framework serves two purposes: (a) 
to establish ?significance? to assist in the determination of causal links between classification systems 
and the forecast quantity (eg. rainfall) and (b) to quantify the signal intensity of the forecast system. We 
define signal intensity as the contribution of the classification system (ie. ‘forecast’ system) to the overall 
variability of the response variable, such as rainfall, temperature, yield, drainage, runoff (eg only). Given 
that the impact of ENSO and their causal links on rainfall are well established, no further significance 
testing is required. However, we suggest instead mapping p-values as a summary measure of signal 
intensity to quantify the spatial impact and variability of the classification system. 

Many parametric and non-parametric statistical procedures can be used to quantify signal intensity arising 
from different classes of CDFs or POEs. Parametric tests require assumptions regarding the nature of the 
underlying distribution corresponding to each strata. To establish if these assumptions have been 
violated, exploratory analyses need to be performed. For a spatial assessment, data from each location 
need to be assessed prior to applying such parametric tests, thereby making the process cumbersome 
and expensive.  

Non-parametric procedures have the advantage of not requiring any prior knowledge regarding the nature 
of the underlying distribution. In order to quantify the overall segregation effect, we need to test the null 
hypothesis that the conditional distribution originated from the same population as the unconditional 
distribution. There are many parametric and non-parametric procedures available to test such hypothesis, 
e.g. Snedecor’s F (F), Likelihood ratio (LR), Kolmogorov-Smirnov multisample (KSM) and Log-Rank 
(LGRK) test (Mantel 1966; Montgomery 2001; Conover 1980; Kalbfleish and Prentice 1980). Here we 
outline how the results from such tests can be presented in order to convey spatial variability of signal 
intensity arising from probabilistic forecast systems. For this purpose, we use the LGRK test as an 
example – others might be equally appropriate. 

The use of the LGRK test to compare rainfall POE was proposed by Maia and Meinke (1999). This test is 
a non-parametrical tool widely used in clinical trials to evaluate possible strata effects on time-to-failure 
distributions, also known as survival distributions (Kalbfleish and Prentice 1980). 

Statistical significance tests have been criticised for using arbitrary levels of significance (Nicholls 2001). 
This is particularly pertinent in relation to forecast skill measures, since even a moderately ‘skilful’ forecast 
(low signal intensity) can result in high value, depending on how the forecast is applied in operational risk 
management (Meinke and Stone 2004). Therefore, we suggest to clearly differentiate between (a) the 
establishment of significance to assist in the determination of causal links between classification systems 
and the forecast quantity (eg. rainfall) and (b) the quantification of signal intensity arising from the forecast 
system. To achieve this, we can select an appropriate statistical test for the hypothesis of ‘no skill’ and 
subsequently use p-values associated with the corresponding test statistic as a quantitative measure for 
signal intensity (e.g. Stone 1992). A p-value ranges between 0 and 1 and is inversely proportional to the 
degree of evidence against the hypothesis of no-strata effect. Thus lower p-values indicate higher signal 
intensity. The magnitude of evidence takes into account the length of the series. We therefore propose 
mapping p-values as a tool for assessing spatial and temporal variability of probabilistic forecast ability in 
climatology, agriculture and natural resource management. Here we provide a simple example of this 
approach. 

Materials and methods  

For illustration purposes we used 3-monthly total rainfall records (1901-2002) of June-August (JJA) winter 
rainfall from 64 high-quality rainfall recording stations across Australia. From the 102 years analysed, 24 
were classified as El Ni?o, 22 as La Ni?a and 56 as ‘Other’. The classification system was derived from a 
combination of ocean and atmospheric data sets (Potgieter et al. 2004). The 64 JJA rainfall series (POEs) 
were segregated into three sub-series (conditional POEs) according to this ENSO classification, resulting 



in 192 sub-series with variable lengths. Series with a high frequency of zeros (e.g. in seasonally dry areas 
such as Australia’s northern regions) will not follow either Gamma, Log Normal or Normal distributions 
(Lennox 2003) and therefore skill measures derived from parametric tests such as p-values associated 
with F or LR tests based on those distributions are not adequate. Hence, we calculated the percent of JJA 
periods with zero rainfall amount for each sub-series and evaluated the goodness-of-fit to the above 
referred distributions using p-values arising from Chi-square tests. We also applied Bartelett’s 
Kolmogorov-Smirnov white noise tests for autocorrelations (Durbin 1967) using the SPECTRA procedure 
of SAS System (SAS 1998). LGRK tests (Mantel 1966) were performed using the SAS Procedure PROC 
LIFETEST (SAS 1998) in order to quantify the magnitude of any ENSO class effect on the JJA POE 
functions. The p-values associated with LGRK were recorded. 

Results and discussion 

Of the 192 sub-series analysed, 47% had at least one year with zero JJA rainfall. The percent of sub-
series showing low goodness-of-fit to Normal (58%), Log Normal (38%) or Gamma (28%) distributions 
was high and always greater than the overall percent of sub-series with at least one zero JJA rain. This 
finding confirms that the lack of fit is not solely due to the binary nature of rainfall as expressed in dry 
versus wet days (Dunn 2003). This provides further evidence that distributions other than those widely 
used for describing rainfall series should be considered if we adopt a parametrical approach e.g. Tweedie 
distributions (Jфrgensen 1987) as proposed by Lennox et al. (2004).  

P-values are not readily available for KSM tests. Further, KSM tests rely on maximum distances, whereas 
the LGRK captures divergences over the entire distribution. Most statistical software packages have 
special modules to perform non-parametrical survival analysis, including the computation of p-values 
associated with the LGRK test. This greatly facilitates spatial assessments of signal intensity.  

As long as an appropriately dense spatial network of data is available, continuous p-value maps can be 
constructed using interpolation methods, e.g. Model Based Geostatistics (MBG) (Diggle et al. 1998). The 
main advantage of using MBG instead of other widely used interpolation methods is that hypotheses 
about coherence of spatial patterns can be tested and spatial confidence limits for predictions can be 
generated.  

For demonstration purposes we have spatially interpolated the p-values derived from LGRK shown in Fig. 
1a and provided a corresponding ‘signal intensity map’ for all of Australia (Fig. 1b). Based on LGRK for 
each station, our analysis shows typical ENSO impacts that have been frequently reported (e.g. Nicholls 
and Wong 1991; Drosdowsky 1993). As expected, ENSO impacts are most noticeable throughout the 
eastern part of Australia confirming the appropriateness of the suggested approach. This signal intensity 
measure based on p-values also provides a means to objectively compare different forecast systems – a 
critically important issue in order to improve risk management practices related to climate variability. 

We acknowledge that for large parts of Australia, the station density of our data set is too sparse for an 
detailed assessment of signal intensity. However, we are currently investigating a much larger data set 
and have included Fig. 1b solely to demonstrate the utility of the approach, rather than providing an 
accurate assessment.  

For rainfall data, the use of p-values associated with likelihood tests based on Tweedie distributions could 
also be considered (Lennox et al. 2004). This would provide a suitable means to address the binary 
nature of rainfall events as well as the skewness of rainfall amounts. However, as with all parametrical 
approaches, this would require a location-by-location assessment of goodness-of-fit to, for example, 
Gamma, Log Normal or Normal distributions, which is one of the major disadvantages of parametric 
approaches. 



 

Fig. 1. ENSO signal intensity based on p -values derived from the Log-Rank test applied to 
compare conditional POEs of 3-monthly JJA rainfall records (1900-2002) from 64 rainfall recording 
stations across Australia. 
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