Low boron in seed depresses soybean seed yield

B. Rerkasem¹, R. N. Bell² and J. F. Loneragan²

Previous studies with another legume, black gram (Vigna mungo L. Hepper) showed that seed with <6 mgB/kg dry matter (DM) had depressed germination % in the laboratory(1), and seed with <10 mgB/kg produced abnormal seedlings when planted in the field(2). In the present study at Chiangmai, Thailand on a low B soil (Typic Tropaqualf), we examined the effect of B levels in soybean seed and B levels in the soil on seedling establishment, crop growth and final seed vield.

Methods

Four lots of soybean (Glycine max cv. Nakhon Sawan 1) seed with B concentrations of 10.5, 14.1, 15.9, and 20.5 mgB/kg DM were obtained from a B rates experiment. Seed was sown in 5 soil B treatments (BO, B1, B2, B3, B4) with hot water soluble B levels of 0.06, 0.11, 0.15, 0.23, and 0.67 mgB/kg soil, respectively, and grown to maturity when seed DM and yield determing components were measured. The experiment was laid out in a split plot design with soil B treatments in main plots, and seed B treatments in sub-plots.

Results and discussion

Twenty days after sowing, 84% of seedlings from low B soybean seed were abnormal when sown at BO: of these about 1/3 remained severely stunted by day 52. Increasing either seed B to 20.5 mgB/kg, or soil B to **B4** corrected stunting of plants, but only high seed B sown at B4 completely alleviated abnormal seedling development at 20 days after sowing (Table 1).

Table 1. Effects of seed and soil B levels on early growth, and on seed dry matter and yield determining components of soybean at maturity. Values are means of four replicates.

Soil B	B0		B4		LSD
Seed B (mg B/kg)	10.5	20.5	10.5	20.5	(pc.05)
% abnormal plants at 20 days	84	18	10	2	15
% Stunted plants at 52 days	24	2	0	0	10
Pod-bearing nodes per plant	4.1	5.2	6.2	6.7	0.8
Pods per plant	6.5	12.3	12.0	14.6	3.1
% Unfilled pods	24	10	3	3	6
Seed dry matter (kg/ha)	283	668	1380	1584	369

At maturity, seed DM was depressed by low seed B and low soil B by the combined effects of decreased number of normal plants, and in the normal plants, by decreased number of pod-bearing nodes, pods per plant, and percentage of unfilled pods (Table 1). The results show that low B levels in soybean seed can depress final seed yields when planted on soils with low levels of hot water soluble B.

- 1. Bell, R.N., McLay, L., Plaskett, D., Dell, B., and Loneragan, J.F. (1989). Aust. J. Agric. Res. 40: 273-279.
- 2. Rerkasem, B., Bell., R.W., and Loneragan, J. F. (1989). J. Plant Nutr. (submitted).

¹ Faculty of Agric, Chiangmai Univ., Chiangmai, Thailand.

² School of Biol. & Environ. Sci. ,Murdoch Univ. ,Murdoch WA. 6150