Sub clovers for Tasmania: production of early mid season and late groups

P.M. Evans and J.A. Carpenter

Dept of Agriculture, Mt Pleasant Laboratories, Launceston Sth, Tasmania

Rainfall and evaporation patters and latitude make late flowering cultivars of sub clover (Trifolium subterraneum) the obvious choice for the Tasmanian environment. However, same early-mid-season lines seem to have the ability to continue growing actively after flowering starts if the season is favourable (1). Introductions and crossbreds from the National Sub Clover Improvement Program (NSCIP) are being evaluated. Data from the best five mid-season-late lines of sub-species subterraneum and early-mid-season yanninicum lines, together with four commercial cultivars used as controls, are presented here.

Methods

Cultural practices and fertiliser applications used were those recommended for tie districts. All sites were drilled with perennial ryegrass cv. Nui at 6 kg ha⁻¹. Two replicates of plots of 2mix 0.5m of 124 NSCIP lines and registered cultivars were sown by hand at 30 kg ha⁻¹ after inoculation, in May 1985 at all sites. The Epping site was on a virgin, sandy lateritic soil. The Relbia site was on a fertile alluvial clay; the Whitemore site was in a cold district on a solodised solonetz clay loam. Seedling numbers were counted each autumn and dry matter production was estimated with a pasture probe (2); trials were grazed after each sampling. Flowering tines wire recorded at 3-4 day intervals. Seed yield was determined by taking two 78.5 cm⁻¹ soil cores to 4 cm depth per plot in early summer.

Results and Discussion

The mid-season-late subterraneum lines established well, but the yanninicum lines established poorly due to poor seed scarification. In 1985, the subterraneum lines had about 3 times more seedlings established and their dry matter production was more than double that of the yanninicum lines (Table 1). In 1986, seedling numbers increased 10 fold over 1985 for both subspecies at Epping and Relbia and the best five lines of both groups yielded about the same (Table 1). Seedling numbers only increased five-fold at Whitemore and at this site the subterraneum lines outyielded the yanninicun lines. Optimum seedling densities were possibly not reached at Whitemore by the latter group. There was a 29 day difference in flowering tine between the earliest crossbred 76Y51.26 and the latest introduction, GF.177.1, but 76Y51.26 produced slightly more dry matter across all three sites. The data suggest that sane early-mid-season yanninicum lines have the ability to keep growing when conditions are favourable and can regenerate well in the second season even if establishment after sowing is poor. The best mid-late lines show a potential to replace currently recommended cultivars in Tasmania, having better dry matter production ability.

Table 1 Establishment year - 1985

SITE	F1.	Seedi	D.M.	Seeds	Seed1	D.M.	Seedy	WHITEHORE Seedl. D.M.		RELBIA Seed]. D.M.		EPPING Seedl. D.M.		Seedl. D.M.	
Line	D.*	/m² #	t/ha-1#	.ds-2\$	#/m ²	#t/ha	\$.dm ⁻²	\$/m ²	st.he	\$.m-2	#t.ha	¢.# ⁻²	ft.ha	€-n ⁻²	#t.ha
89830F 89880J 89777C 89774F GF.177.1 Mean	29 41 47 52 56 47	596 388 224 200 416 365	2.1 1.7 2.3 1.5 1.9 1.9	183 126 141 118 77 129	560 380 432 512 336 444	1.5	165 87 155 168 228 161	520 316 284 492 352 373	0,5 1,1 1,3 0,8 0,7 0,9	4175 4775 2900 3050 1425 3265	2.6 2.3 3.3 2.7 1.6 2.5	5650 6175 2700 4850 4925 4960	2.0 1.8 1.7 2.2 2.9 2.1	3000 1675 2100 1900 625 1900	2.7 2.5 3.0 2.9 1.9 2.6
Woog. K'dale	24 42	156 420	1.0 2.6	40 115	128 368	1.1 2.0	64 227	240 228	0.3	605 2475	1.0 2.6	875 4050	1.4 1.8	825 1100	1.5
76¥51,26 76¥51,9 76¥52,14 76¥52,12 76¥52,15 Mean	27 34 45 45 47 40	132 108 172 24 148 117	0.9 0.7 1.1 0.4 1.2 0.9	36 33 40 32 52 39	108 52 188 64 136 110	0.6 1.0 0.8 0.9 0.9 0.8	72 79 109 96 99 91	136 232 112 104 232 163	0.2 0.3 0.1 0.3 0.3 0.2	1925 1900 1150 775 725 1295	3.1 2.3 1.9 2.2 2.7 2.4	1875 1175 1675 1800 1325 3570	1.7 2.4 2.6 2.6 1.7 2.2	1675 950 975 550 950 1020	1.9 1.3 1.7 1.0 1.7 1.5
Trikkala Larise	35 43	104 208	0,7 1,3	70 107	144 248	0.8	62 118	60 128	0.3	1275 1800	3.7	4000 2425	2.1 1.7	475	0,6 0,2

* Flowering date, days after 1 Sept. @ No. seedlings established, autumn # Sub clover only, total all samplings \$ Seed yield, seeds per dm²

1. Gladstones, J.S. 1985, W.A.D.A. ISSN 0157-6259

2. Vickery, P.J. and Nicol, G.R 1982 CSIRO. Anim. Res. Lab. T. Pap. No. 99 22p