Potential productivity of irrigated maize in Northern Victoria

K.E. Pritchard

Kyabram Research Institute, R.M.B. 3010, Kyabram, Vic. 3620

Yields of maize in northern Victoria are limited by the poor physical characteristics of the predominant red-brown earth soils. In an attempt to allow maize to express its full potential to convert radiant energy into plant dry matter under field conditions, two experiments were conducted.

Experiment 1 : Maximum production - experimental plot.

To minimise constraints to growth, an area (15m x 15m) was prepared using these ameliorative treatments: All the subsoil was broken up, gypsum and superphosphate were added, subsurface drainage installed at 1.2m, the topsoil replaced, extra topsoil added and 75 t/ha cow manure incorporated. Variety Pioneer 3183 was hand sown in a diamond pattern at 92,000 plants/ha on 31/10/84, and irrigated by fine sprinkler's at an evaporation deficit of 35-40 mm. Applied fertilizer (kg/ha) was 500 N, 117 P, 75 K.

Results

```
Dry matter yield: 34.8 t DM/ha = 254 kg DM/ha/day for 137 days.

Grain yield: 16.6 t DM/ha, (18.6 t at 12%). Harvest Index .48.

Conversion of radiant energy: % conversion = mwhr x 0.9099

Radiation from 8/11/84 (emergence) to 25/3/85 (physiological maturity) was

96625 mwhr, giving a conversion efficiency of 3.96% over 137 days.
```

Experiment 1 : Maximum production - field crop.

1 ha (var. XL82) was grown on an ex-pasture soil using recommended row crop techniques but with excellent management. Sown 31/10/85, emerged 8/11/85, harvested 25/3/86. Its growth curve is shown in Fig. 1.

Fig.1 Dry matter accumulation of maize (t DM/ha). Variety XL82, 1985-86.

Growth from canopy closure to hard dent stage was linear at a rate of 328 kg DM/ha/day. Conversion of radiation for 78 days was 4.64%.

These high yields and conversion efficiencies demonstrate the great potential of irrigated maize in northern Victoria.